If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x+x^2=3900
We move all terms to the left:
100x+x^2-(3900)=0
a = 1; b = 100; c = -3900;
Δ = b2-4ac
Δ = 1002-4·1·(-3900)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-160}{2*1}=\frac{-260}{2} =-130 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+160}{2*1}=\frac{60}{2} =30 $
| -2y+37=3(y+9) | | 4(y+9)=-3y-27 | | 2.5=0.15p=0.4p | | 8x-9=-5(x-6) | | 8k-11=29 | | 8x-9=-5(x-6 | | 6(v-7)+5v=24 | | -25=2(u+5)+3u | | -14=-4x+2(x-3) | | 6(5x-3)(3x+5)=0 | | -4.9a^2+a=-21 | | (a*2)+(a+4)/(a-1)=14a= | | (a*2)+(a+4)/(a-1)=14a= | | 10y-4=2y+12 | | -4.9a^2+a=21 | | (3-z)(5z+1)=0 | | 288-w=184 | | 275=-w+101 | | X7=63xx= | | 10^2x-5=7^x+4 | | 3/5p=0 | | 11/8=7/x | | 2(x+3)=x-4) | | 1-2(3-x)/2+3-x/3=5x | | |6z–3|=5 | | 3+2(x-1)=30 | | -4.9a^2+a=0 | | 6/x+8=-40 | | 4(x-2)-5=x-6(x+3) | | -15÷4-17x=9+10x | | -0.5x^2+2x-2=0 | | 5x-16=10x2 |